Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 428
Filter
1.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709922

ABSTRACT

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Subject(s)
Bacterial Proteins , Bartonella , Type IV Secretion Systems , Bartonella/metabolism , Bartonella/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Humans , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/genetics , Protein Transport , Animals
2.
mBio ; 15(5): e0075923, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38564675

ABSTRACT

Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.


Subject(s)
Genome, Bacterial , Metagenome , Phylogeny , Rickettsia , Rickettsia/genetics , Rickettsia/classification , Evolution, Molecular , Rickettsiales/genetics , Rickettsiales/classification , Genetic Variation , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gene Transfer, Horizontal , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664513

ABSTRACT

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Subject(s)
Conjugation, Genetic , Plasmids , Type IV Secretion Systems , Plasmids/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
4.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38631913

ABSTRACT

The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.


Subject(s)
Helicobacter pylori , Type IV Secretion Systems/chemistry , Periplasm
5.
Emerg Microbes Infect ; 13(1): 2320929, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38530969

ABSTRACT

The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.


Subject(s)
Acinetobacter baumannii , Type IV Secretion Systems , Humans , Escherichia coli/genetics , Plasmids , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
6.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38437248

ABSTRACT

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Subject(s)
F Factor , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/metabolism , Fimbriae Proteins/genetics , Plasmids/genetics , DNA, Bacterial , Bacterial Proteins/metabolism
7.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332152

ABSTRACT

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Subject(s)
Bacterial Proteins , Xanthomonas , Humans , Bacterial Proteins/metabolism , Xanthomonas/metabolism , Type IV Secretion Systems/metabolism , Anti-Bacterial Agents/metabolism
8.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38176008

ABSTRACT

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Antigens, Bacterial/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Interleukin-8/metabolism , Helicobacter Infections/microbiology
9.
Nat Rev Microbiol ; 22(3): 170-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37814112

ABSTRACT

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.


Subject(s)
Fimbriae, Bacterial , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/chemistry , Fimbriae, Bacterial/metabolism , Bacteria/genetics , Bacteria/metabolism , Gram-Negative Bacteria/metabolism , DNA , Bacterial Proteins/genetics , Bacterial Proteins/chemistry
10.
Front Cell Infect Microbiol ; 13: 1255852, 2023.
Article in English | MEDLINE | ID: mdl-38089815

ABSTRACT

Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.


Subject(s)
Bacterial Proteins , Type IV Secretion Systems , Type IV Secretion Systems/metabolism , Bacterial Proteins/metabolism , Bacteria/metabolism , Protein Transport , Adenosine Triphosphatases , Type III Secretion Systems/metabolism
11.
Infect Immun ; 91(11): e0036523, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37843413

ABSTRACT

The host type I interferon (IFN) response protects against Legionella pneumophila infections. Other bacterial pathogens inhibit type I IFN-mediated cell signaling; however, the interaction between this signaling pathway and L. pneumophila has not been well described. Here, we demonstrate that L. pneumophila inhibits the IFN-ß signaling pathway but does not inhibit IFN-γ-mediated cell signaling. The addition of IFN-ß to L. pneumophila-infected macrophages limited bacterial growth independently of NOS2 and reactive nitrogen species. The type IV secretion system of L. pneumophila is required to inhibit IFN-ß-mediated cell signaling. Finally, we show that the inhibition of the IFN-ß signaling pathway occurs downstream of STAT1 and STAT2 phosphorylation. In conclusion, our findings describe a novel host cell signaling pathway inhibited by L. pneumophila via its type IV secretion system.


Subject(s)
Interferon Type I , Legionella pneumophila , Legionnaires' Disease , Humans , Legionella pneumophila/physiology , Type IV Secretion Systems , Interferon-gamma/metabolism , Signal Transduction
12.
mBio ; 14(5): e0214323, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37772866

ABSTRACT

IMPORTANCE: The rapid emergence of drug-resistant bacteria and current low rate of antibiotic discovery emphasize the urgent need for alternative antibacterial strategies. We engineered Escherichia coli to conjugatively transfer plasmids to specific E. coli and Pseudomonas aeruginosa recipient cells through the surface display of cognate nanobody/antigen (Nb/Ag) pairs. We further engineered mobilizable plasmids to carry CRISPR/Cas9 systems (pCrispr) for the selective killing of recipient cells harboring CRISPR/Cas9 target sequences. In the assembled programmed delivery system (PDS), Nb-displaying E. coli donors with different conjugation systems and mobilizable pCrispr plasmids suppressed the growth of Ag-displaying recipient cells to significantly greater extents than unpaired recipients. We also showed that anucleate minicells armed with conjugation machines and pCrispr plasmids were highly effective in killing E. coli recipients. Together, our findings suggest that bacteria or minicells armed with PDSs may prove highly effective as an adjunct or alternative to antibiotics for antimicrobial intervention.


Subject(s)
Escherichia coli , Type IV Secretion Systems , Ligands , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , CRISPR-Cas Systems
13.
Front Cell Infect Microbiol ; 13: 1203159, 2023.
Article in English | MEDLINE | ID: mdl-37593760

ABSTRACT

Introduction: Many Gram-negative plant- and animal-pathogenic bacteria employ type IV secretion (T4S) systems to transport proteins or DNA/protein complexes into eukaryotic or bacterial target cells. T4S systems have been divided into minimized and expanded T4S systems and resemble the VirB/VirD4 T4S system from the plant pathogen Agrobacterium tumefaciens and the Icm/Dot T4S system from the human pathogen Legionella pneumophila, respectively. The only known plant pathogen with both types of T4S systems is Xanthomonas euvesicatoria which is the causal agent of bacterial spot disease on pepper and tomato plants. Results and discussion: In the present study, we show that virB/virD4 and icm/dot T4S genes are expressed and encode components of oligomeric complexes corresponding to known assemblies of VirB/VirD4 and Icm/Dot proteins. Both T4S systems are dispensable for the interaction of X. euvesicatoria with its host plants and do not seem to confer contact-dependent lysis of other bacteria, which was previously shown for the chromosomally encoded VirB/VirD4 T4S system from Xanthomonas axonopodis pv. citri. The corresponding chromosomal T4S gene cluster from X. euvesicatoria is incomplete, however, the second plasmid-localized vir gene cluster encodes a functional VirB/VirD4 T4S system which contributes to plasmid transfer. In agreement with this finding, we identified the predicted relaxase TraI as substrate of the T4S systems from X. euvesicatoria. TraI and additional candidate T4S substrates with homology to T4S effectors from X. axonopodis pv. citri interact with the T4S coupling protein VirD4. Interestingly, however, the predicted C-terminal VirD4-binding sites are not sufficient for T4S, suggesting the contribution of additional yet unknown mechanisms to the targeting of T4S substrates from X. euvesicatoria to both VirB/VirD4 and Icm/Dot T4S systems.


Subject(s)
Legionella pneumophila , Xanthomonas , Animals , Humans , Type IV Secretion Systems/genetics , Eukaryota , Xanthomonas/genetics
14.
J Microbiol Biotechnol ; 33(12): 1543-1551, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-37528551

ABSTRACT

The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.


Subject(s)
DNA , Type IV Secretion Systems , Type IV Secretion Systems/chemistry , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Biological Transport , Bacterial Proteins/genetics
15.
ISME J ; 17(10): 1523-1525, 2023 10.
Article in English | MEDLINE | ID: mdl-37620539
16.
PLoS One ; 18(8): e0286358, 2023.
Article in English | MEDLINE | ID: mdl-37561685

ABSTRACT

Brucellosis is a common zoonosis, which is caused by Brucella infection, and Brucella often infects livestock, leading to abortion and infertility. At present, human brucellosis remains one of the major public health problems in China. According to previous research, most areas in northwest China, including Xinjiang, Tibet, and other regions, are severely affected by Brucella. Although there are vaccines against animal Brucellosis, the effect is often poor. In addition, there is no corresponding vaccine for human Brucellosis infection. Therefore, a new strategy for early prevention and treatment of Brucella is needed. A multi-epitope vaccine should be developed. In this study, we identified the antigenic epitopes of the Brucella type IV secretion system VirB8 and Virb10 using an immunoinformatics approach, and screened out 2 cytotoxic T lymphocyte (CTL) epitopes, 9 helper T lymphocyte (HTL) epitopes, 6 linear B cell epitopes, and 6 conformational B cell epitopes. These advantageous epitopes are spliced together through different linkers to construct a multi-epitope vaccine. The silico tests showed that the multi-epitope vaccine was non-allergenic and had a strong interaction with TLR4 molecular docking. In immune simulation results, the vaccine construct may be useful in helping brucellosis patients to initiate cellular and humoral immunity. Overall, our findings indicated that the multi-epitope vaccine construct has a high-quality structure and suitable characteristics, which may provide a theoretical basis for the development of a Brucella vaccine.


Subject(s)
Brucella , Brucellosis , Vaccines , Animals , Humans , Type IV Secretion Systems , Epitopes, B-Lymphocyte , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Brucellosis/prevention & control , Computational Biology/methods , Vaccines, Subunit
17.
Infect Immun ; 91(9): e0015023, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37638724

ABSTRACT

Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.


Subject(s)
Helicobacter pylori , Helicobacter pylori/genetics , Interleukin-8 , Type IV Secretion Systems/genetics , Epithelial Cells , Genomic Islands
18.
Curr Microbiol ; 80(8): 270, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37402963

ABSTRACT

The diversity and distribution of secretion systems in Klebsiella pneumoniae are unclear. In this study, the six common secretion systems (T1SS-T6SS) were comprehensively investigated in the genomes of 952 K. pneumoniae strains. T1SS, T2SS, type T subtype of T4SS, T5SS, and subtype T6SSi of T6SS were found. The findings indicated fewer types of secretion systems in K. pneumoniae than reported in Enterobacteriaceae, such as Escherichia coli. One conserved T2SS, one conserved T5SS, and two conserved T6SS were detected in more than 90% of the strains. In contrast, the strains displayed extensive diversity of T1SS and T4SS. Notably, T1SS and T4SS were enriched in the hypervirulent and classical multidrug resistance pathotypes of K. pneumoniae, respectively. The results expand the epidemiological knowledge of the virulence and transmissibility of pathogenic K. pneumoniae and contribute to identify the potential strains for safe applications.


Subject(s)
Klebsiella Infections , Type IV Secretion Systems , Humans , Klebsiella pneumoniae/genetics , Virulence/genetics , Genome, Bacterial/genetics , Genomics , Anti-Bacterial Agents
19.
Microbiol Spectr ; 11(4): e0011023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37310220

ABSTRACT

Pecan (Carya illinoinensis) and Chinese hickory (Carya cathayensis) are important commercially cultivated nut trees. They are phylogenetically closely related plants; however, they exhibit significantly different phenotypes in response to abiotic stress and development. The rhizosphere selects core microorganisms from bulk soil, playing a pivotal role in the plant's resistance to abiotic stress and growth. In this study, we used metagenomic sequencing to compare the selection capabilities of seedling pecan and seedling hickory at taxonomic and functional levels in bulk soil and the rhizosphere. We observed that pecan has a stronger capacity to enrich rhizosphere plant-beneficial microbe bacteria (e.g., Rhizobium, Novosphingobium, Variovorax, Sphingobium, and Sphingomonas) and their associated functional traits than hickory. We also noted that the ABC transporters (e.g., monosaccharide transporter) and bacterial secretion systems (e.g., type IV secretion system) are the core functional traits of pecan rhizosphere bacteria. Rhizobium and Novosphingobium are the main contributors to the core functional traits. These results suggest that monosaccharides may help Rhizobium to efficiently enrich this niche. Novosphingobium may use a type IV secretion system to interact with other bacteria and thereby influence the assembly of pecan rhizosphere microbiomes. Our data provide valuable information to guide core microbial isolation and expand our knowledge of the assembly mechanisms of plant rhizosphere microbes. IMPORTANCE The rhizosphere microbiome has been identified as a fundamental factor in maintaining plant health, helping plants to fight the deleterious effects of diseases and abiotic stresses. However, to date, studies on the nut tree microbiome have been scarce. Here, we observed a significant "rhizosphere effect" on the seedling pecan. We furthermore demonstrated the core rhizosphere microbiome and function in the seedling pecan. Moreover, we deduced possible factors that help the core bacteria, such as Rhizobium, to efficiently enrich the pecan rhizosphere and the importance of the type IV system for the assembly of pecan rhizosphere bacterial communities. Our findings provide information for understanding the mechanism of the rhizosphere microbial community enrichment process.


Subject(s)
Carya , Rhizosphere , Carya/microbiology , Type IV Secretion Systems , Bacteria/genetics , Phenotype , Soil , Soil Microbiology
20.
Infect Immun ; 91(7): e0043622, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37338415

ABSTRACT

The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.


Subject(s)
Bacterial Proteins , Type IV Secretion Systems , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Bacterial Proteins/metabolism , Bacteria/genetics , Biological Transport , DNA/metabolism , DNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...